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SUMMARY (2 64

The theoretical analyses of the 1impact of
pellets with thin plates and the resulting expanslon flow
1s presented in this report. The analysis 1s based on
the impact model discussed in reference 1, 1n which what
are hoped to be secondary effects, are neglected. The
short term expansion of the plasma, the interaction between
shock and rarefaction waves, and the long term expansion
are investlgated In some detail.

Engineering design data for the protection of a
space vehicle from meteor impacts are presented on tﬂe
basis of the theoretical calculatlons carried out on the
impact model.

Experimental procedures are outlined to check the
theoretical results in the velocity range of 7 - 10 km/sec.,
which are obtainable in the laboratory. Further theoreticail
analyses are indicated which would allow for a more refined

model and take temperature effects into account.



1.0 INTRODUCTION

The development of protective systems against
meteoroid impacts for space vehicles cannot be carried out
experimentally because meteoroid velocities exceed those
attainable experimentally with macroscopic particles. In
order to design a protection system, it 1s necessary to
develop an analytical model which will allow prediction of
impact effects, to check this model at velocities which
are reliably attainable in the laboratory, and to hope that
it will satisfactorily predict higher velocity effects.

This hope can be realized only if the nature of the physical
processes do not alter in the velocity regime of interest,
that is from the 7 - 10 km/sec. of the laboratory, to the

72 km/sec. which is said to be the maximum meteoroid
velocity (Ref. 4).

A series of changes does in fact take place in
the impact processes in the velocity range from zero up to
5 km/sec, as the pressures generated range from those which
produce only plastic deformation, up to those which vaporize
and ionize the impacting materilals.

Since the minimum meteoroid velocilties are
adequate to cause vaporization on impact, there is good
reason to believe that a single model may be applicable

over the entire range of meteoroid velocitles unless the



astronomical temperatures and pressures generated in the
higher range of impact velocitles initiate fusion reactions with
suitable materials, so introducing another physical process.

" In 1946, Whipple (reference 11) suggested
that the kinetic energy of a meteoroid could be used to destroy
it on impact with a bumper, or shield, spaced a distance away
from the main vehicle skin. The thickness of such a bumper
might need to be only a fraction of the size of the meteoroid,
provided the impact velocity and spacing were large.

This report and its predecessor (ref. 1) describe
the analysis of a model for the end-on impact of a cylinder
on a thin plate, assuming that the impact velocity is sufficient
to vapourize the primary shocked region (figure 4.1). For
most materials this means velocities exceeding about 10 km/sec.,
although a few would vapourize at about half thils velocity.

The objective of the research program to be
discussed in this report is the development for engineering
design purposes, of an adequate method of predicting bumper
plate effectiveness. The problem may be divided into various
distinct phasesi The first concerns the initial states
generated by impact in both the bumper and the colliding
particle. Confining our attention to the high velocity
range of the spectrum associated with meteors, we may make
the observation that the dominant phenomena are the impact

generated shock waves which proceed ahead of any other



disturbance spreading throughout the bumper and colliding
particle. This approach assumes the validity of classical
fluid mechanics, and has been used extenslvely by workers
at Los Alamos (refs. 2 and 3) to derive from measured shock
wave characteristics, the appropriate equations of state

for compressed metals, and by Bjork (¥ef. ¥) and others for
analyzing hypervélocity impact phenomena. In order to
apply this relatively simple analytical model to impact,
losses arising from fracture, vapourization, ignition etc.
are neglected, and the shock‘assumed to Eehave as it would
in an ideal medium with perhaps an additional complexity of
a modified equation of state.

The conditions generated at the instant of
impact, will be subsequently distributed in time quite
differently depending on whether the processes are confined
to one dimension or allowed to develop 1in a general
three-dimensional manner. Bjor'kLL employed a computer
solution to obtain numerical answers to specific cases,
while in order to obtain an insight into the role of various
parameters a previous report (ref. 1) performed under this
study contract assumed impact shocks of sufficient strength
that the standard strong shock assumption of limiting
density ratio could be made. These assumptions allowed
quite simple analytical expressions to be developed for

impact induced thermodynamic states.



The theoretical analysls so far completed has
opened up a number of experimental avenues of approach
to check the original theoretical model. Refinements
and addltional effects, such as lonilzation, can then be
considered 1n a re-appraisal of the original theoretical

model.



2.0 NOMENCLATURE

a - sound speed - mm/Psec (i.e. km/sec).
e - specific internal energy - kilocal/gm
P - pressure - megabars
- -
R or R - left and right running rarefactions
\R - inward running rarefaction
r - radius - mm., radial coordinate
E—or-g - left and right running shocks
S - entropy
t - time - sec. or usec
T - temperature - °R or °K
u - element or particle velocity, relative to unshocked

material. mm/psec
\% - pellet velocity, relative to bumper - mm/hsec

\ - particle veloclty, absolute (relative to original
bumper) mm/usec

W - shock speed, relative to unshocked material,
mm/psec

X - axlal coordinate, axial distance, mm.

) - bumper thickness - mm.

3 - Cp/CV or polytropic exponent

€ - density gm/cm3




Subscripts

B

P

bumper

pellet

unshocked condition
axial

cylindrical

radlal



3.0 APPLICATION TO VEHICLE ENGINEERING DESIGN

The information required by the engineer
attempting to design a protection system for a space vehicle
so that 1t will be able to complete its mission with an
acceptably low probabllity of destruction by an impacting
meteor 1s drawn from many branches of scilence and mathematics.
To design a protection system that would be 100% reliable
is virtually impossible, since he would require precise
information regarding the characteristics of all meteors,
thelir composition, mass, density, shape, velocity, and in
particular thelr position in space at any time. In addition
he would require knowledge of the real physical processes
which occur when such a meteor impacted against some
arbitrary bumper material so that he could construct the
main vehicle hull to withstand the resulting forces exerted
on 1it.

The information we have at our disposal is
rather vague in nature and also somewhat uncertain. From
obserVation of meteors entering the earth's atmosphere, and
lately from information relayed to the ground by satellites
in near earth orbits, astronomers and-physicists have made
order of magnitude predictions of the composition of
meteors. These predictions vary, depending on source,
from 5 x 10_2 gm/cc for the so-called dust-ball meteor to

2-10 gms/cc for the stony or metallic meteor. Reasonably



good agreement has been reached by scientists engaged 1in
the prediction of the veloclty range of meteors; it is
generally conceded that most meteors have a velocity
between 11 and 72 km per second with relatively large
concentrations in the 20 km per second range and in the
LO km per second range. Other investigations indicate
that meteors are not distributed uniformly in space, and
in addition the size and velocity of meteors in dependent
on position in space. It is expected that relatively small
meteors, with = .05 gm/cc. would be encountered on missions
involving earth orbits; the majority of these would
presumably be in orbit about the earth and hence their
velocity could be predicted reasonably accurately. In
addition to the random distribution of meteors in space,
there appears to be a large concentration of meteors in
certain regions within the solar system as demonstrated
by the marked increase of the number of meteors entering
the earth!s atmosphere at particular times of the year.
This zone of concentration appears to be in the plane
containing the sun and the majority of the planets, with
the numbers decreasing with distance from this plane.
This report does not attempt to provide the
designer with the type of precise information he normally

expects when asked to design a system to perform a particular



function with a high degree of reliability. It does,
however, in the opinion of the authors, provide the best
Information available based on current knowledge of the
meteor problem. Many assumptions and approximations have
been made 1n the analysis leading to the design data
presented here, some out of expedience in order to obtain
early, albelt crude solutions, (i.e. the assumption of
cylindrical meteors with their velocity vector along the
axis of symmetry) and some out of necessity to make the
problem tractable to analytical analysis, or to fill gaps
in the present day knowledge of the complex physical processes
occurring in the vapourization and expansion of materials
undergoing hypervelocity impact.

To provide an adequate meteor protection
device the designer must first decide on the characteristics
of the "maximum acceptable' meteor; that is, he must decide
on the size, density and velocity of the meteor he wishes
to protect against. The probability of encountering a
meteor of a particular size, density and velocity is
dependent on the particular mission and size of the space
craft; the protection system must be so designed that the
chance of encountering a larger, faster or slower, or more
dense meteor than that decided upon, which would penetrate
the protection system, 1s consistent with the acceptable

chance of failure of the mission.



Having chosen the characteristics of the
meteor, i.e. the minimum velocity and maximum size and
density which would likely be encountered, the information
contalned in figure 3.1, will give the minimum thickness
necessary for a given bumper material to completely vaporize
the impacting meteor. For the range of meteor's likely
to be encountered it will be found that the bumper thickness
will be 1limited by structural considerations in which case
the minimum density of the bumper material can be determined
from figure 3.1. The critical pressure below which the
pellet or meteor material would not vaporize was taken
to be approximately equal to 1.5 x 106 psi. This filgure
is well above the vapor pressure of most materials.

The polytropic exponent (¥) relating pressure
and density of the vaporized meteor material was taken
as 3, a value currently thought to be most representative
of the highly shocked impact states.

Once the bumper material and thickness have
been chosen to satisfy the conditions necessary to vaporize
the meteor, the spacing of the bumper from the vehicle skin
must be determined. The spacing will have to be large
enough to permit the expansion of the highly compressed,
highly energized plasma to an acceptably low pressure and
energy level consistent with the design of the main vehicle

hull. The spacing of the bumper then will depend on the
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capacity of the skin to absorb energy and impulsive pressure
loading and on the residual energy, and pressure distribution
in the "spray'.

Figures 3.2 & 3.4 show the spacing that is required
knowing the maximum veloclty, density, and size of the meteor
and the maximum pressure the skin can withstand at a point.
If the rate at which the pressure 1s applied or the impact

loading is the critical value this also can be obtained

from the non-dimensional time coefficient of figure 3.2.

t
8/V
Figure 3.3 indicates that the radilal distri-
bution of pressure has a generally Gausslan shape, with
the peak value equal to that predicted by figure 3.3 and
decaying approximately as the inverse cube of the radilus,
measured from the line of flight of the meteor axis. The
force exerted on the vehicle skin can then be determined
by the integration‘of these curves and checked with design
data. From these observations it 1s apparent that the
maximum spacing should be used, thereby reducing the peak
pressure and energy levels to a minimum at the vehicle
skin. The choice of ¥ = 3 will give a conservative
estimate of the spacing required both for maximum pressure
and impact loading as it is likely that this choice of ¥

would be high for the vapourized material after a long

term expansion.
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The superficial nature of the: simulation of
the actual expansion by the model used makes the detail
of the results calculated somewhat dubilous, however, the
spatial and temporal distribution 1s broadly speaking
correct although the effect of the true nature of the
complex decay systems will certainly influence the detailed
shape of the curves. The assumption of uniform translation
of the expanding sphere (at the initial velocity of the
shocked media UB) introduces an obvious error in the results
since in general the total momentum delivered to the target
as a consequence of this assumption will exceed that of
the incoming meteor. If the incoming meteor shock
vapourizes an amount of bumper material equal to its own
initial mass the resulting expansion cloud would translate
with a uniform velocity as assumed. However, in general,
the mass of the shocked bumper material will be much less
than that of the meteor, particularly if the "maximum
acceptable" meteor is encountered, and hence a conservative
error 1s introduced into the analysis. This conservative
error would make the result more acceptable as design

data.



4.0 GENERAL METHOD OF ANALYSIS

b1 Initial Shock System

The impact of a particle with a bumper will
produce a complex shock wave pattern in both materials, as
the pellet 1s decelerated and the bumper material is
accelerated. For analysils, this complex shock system is
simplified (ref. 1) by considering the impact of a cylindrical
pellet, end on, with a bumper much thinner than the pellet
diameter. The shock system is then taken as one-dimensional
within the bumper consisting of two plane shock waves, one
in the pellet and another in the bumper, as shown in
figure 4.2.1a.

The shock pressures, densities and velocities
must satisfy the dynamic equations of motion; In addition,
the compressed gas is assumed to obey the gas law P = €RT
and a polytropic relationship between pressure and density
P = A&BI. The application of standard analytical methods

(refs. 9, 10) then leads to the Rankin-Hugoniot relations.

If the strong shock density ratio is assumed ééL :Eéi%),
O - 1L

the following relationships can be shown (ref. 1) to
exist.
a) Particle velocity behind the shock, relative to unshocked

material.

-V B . o
uB— 1+ °* where 0“2 :8P+1 ?PO e 4.1&



- 17 -

=6.u ... 4.1b

b) Shock velocity, relative to unshocked material
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e) Sound speed 1n shocked material

)
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ap N/_EL_E-——— up ... 4.5p

The significance of particular values of o

can be shown by taking a few numerical examples. Consider
¥ =8P, eBo =€PO, hence 0 = 1.

a) 8 =2 3. For 8 = 3, wy = wp = 2ug = V, so that the pellet
shock moves upstream at the same speed as the pellet moves

-

into the bumper, hence Sp remains in the plane of the

upstream face of the bumper. For ¥ > 3, the shock velocity

exceeds the pellet velocity and the shock moves upstream



of the bumper. For o 4 1 (bumper less dense than pellet),
the same effect can be found for ¥ < 3.

p) ¥ < 2. For ¥ < 2, ap << ug, and the fluid flow is
sonic or supersonic, so that rarefactions and small pressure
waves cannot flow upstream. Since the bumper shock reflects
at the bumper rear face as a rarefaction travelling upstream
at a velocity equal to ags it will remain in the plane of
the downstream face of the bumper for ¥ = 2, and be swept
downstream for ¥ < 2. Since o does not enter the
relationship between a and u, 1its value does not alter

these deductions.

c) 2 <% < 3. For values of ¥ between 2 and 3 the pellet
shock will remain inside the bumper and be overtaken by

the rarefaction wave. For o<l the pellet shock will tend
to move upstream of the bumper and for ¢ > 1 the pellet

shock will tend to move downstream of the bumper.

.2 Initial Expansion Process

The initial expansion process has been
analysed assuming that the shock has not been decayed
by the rarefaction waves. This imposes a 1limit for the
time for the initial expansion processes to be valid.
The nature of the initial expansion depends on the value

of 8 and O .
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For ({E})5\<: 1 (assuming % p = o) B = ¥ ) the
expansion flow takes place outside and downstream of the
bumpexr. This case was considered in Ref. 1, and 1little
further work has been done on 1t since that report was
issued.

Figures 4.2.1b and ¢ illustrate the type of
expansion flow, and figure 4.2.2 gives the spray cone angle
resulting from the expansion. The spray angle is given by
the axial velocity of a particle (ug) at the time it is
given the radial escape velocity (g%I.aB), This angle
remains fixed (for strong shocks) since both ug and ap
decrease by the same factor as the shock decays.

For values of ¥ > 1+ é:, the expansion
process resembles the flow out of a nozzle or cavity,
since the release wave can move into the subsonic stream
of compressed medium. This material is enclosed by the
walls of the hole in the bumper and is fed by the pellet
shock as the pellet feeds into it. The arrival of the
bumper shock at the rear face of the humper completes the
vaporization of the bumper; the shock reflects as a
centered rarefaction wave (in the x-t plane) whose head
moves into the compressed gas. This produces a Jet or
stream of gas downstream of the bumper. The extreme
particle (forming the escape boundary and tail of the axial

rarefaction) moving at escape velocity with zero temperature,
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pressure and density, the others moving less rapidly and
with finite pressure and temperature. Since the Jjet is

in vacuum, a cylindrical release wave is formed which

moves Inward, interacting with the axial wave and spreading
the Jet radially, although with a lower escape velocity
than the axial wave since the action of the latter has

reduced the sound speed in the jet where it issues from

2
.a -
¥+1  ©

the cavity to a fixed value of

Inside the converging radial (cylindrical)
rarefaction, the flow is one-dimensional and the velocities
and states can be calculated analytically since the wave
is centered. No attempt has been made to calculated the
interaction field flow analytically, but a numerical solu-
tion of the flow equations in finite difference form has
given a fairly accurate picture of t@e conditions existing
in this region, The inner and outer boundaries of the
interaction field can be derived analytically and their
location 1s calculated with fair agreement by the numerical
solution. Typical flow patterns and energy and momentum
distributions are shown in section 7.1 figures (7.1.8 to
7.1.12).

It should be realized that the flow conditions

are short term only, in that the shocked state is considered

as constant with time (although otherwise the flow is very
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"unsteady"). The validity of the model breaks down when
the pellet shock decays significantly due to interaction
with the rarefaction, or when the pellet trailing face
reaches the pellet shock and the latter reflects as a
right-moving rarefaction. Since the former occurs in the
time it takes the shock to travel only a few bumper thick-
nesses, the illustrated flow pattern applies for distances
of the order of one or two pellet diameters downstream
of the bumper. Nevertheless, the model 1s essential
to show the initial stage of the expansion flow, which
governs its long term expansion, as described in section 4.4,
For some combinations of ¥ and e , (for
example, ¥ > 3, G’:l), the pellet shock moves upstream of
the bumper and a cylindrical release wave forms and
propagates into the shocked material behind the shock,
Tigure 10. As will appear in the next section however,
the time during which this takes place is limited by the
deceleration of the shock when the axial rarefaction
overtakes 1it, and it is swept back into the bumper by
the unshocked pellet, Consequently its main significance
appears at present to be as a possible experimental
indicator of the effective value of ¥ , since this wave
will splash pellet material onto the front face of the

bumper.
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4.3 Rarefaction, Interaction and Shock Decay

For any value of ¥ and ¢ the axial
rarefaction wave, initiated when the bumper shock reaches
the downstream side of the bumper, will overtake the pellet
shock and decay its strength. The time taken for this
to occur will depend on ¥ and o .

Figure 4.3.1 illustrates the standard numerical
processes (refs. 9, 10) for the rarefaction wave interaction
and shock decay in the x-t plane. The entropy change
behind the decaying shock and across reflected interfaces
were neglected. The sound speed in the unshocked material
was assumed to be zero as was done in reference 1.

Figures 7.2.3 to 7.2.6 show the post-shock
pressures as a function of the shock location in the pellet
from the original leading edge of the pellet for various
values of ¥ and o . The shaded areas indicate where
the shock is enclosed within the bumper.

Since the shock decay is accompanied by
shock deceleration the shock will eventually be swept
downstream of the bumper in all cases. For certain values
of ¥ and & the shock may initially progress upstream
of the bumper. Whenever the shock progresses outside the
bumper radial rarefaction waves will be initiated and

tend to decay the shock strength.
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The time taken for the radial rarefaction
wave to reach the centre of the pellet was calculated as
a function of D/§ for various values of ¥ and o , figures
7.2.8 and 7.2.10. This was done allowing for the axial
decay of the shock.

A stepwise numerical process 1s being
carried out at present to determine the decay of the shock
strength due to the radial rarefaction waves only.

Figure 3.1 was obtained from the results
of the axial decay analyses and show the critical pellet
length to thickness as a function of impact pressure for

¥ = 3 and values of o .

4.4 Long Term Expansion Process

The expansion of the gas cloud after the
pellet has been shocked and only expansion waves exist
{assuming expansion into a vacuum) 1is very complex. The
shocked states are non-uniform due to shock decay and
the shocked particles are released at non-uniform time
rates. The velocity and density distribution of the gas
cloud will depend on the 1ength/ﬂiameter ratio of the
pellet and the bumper thickness/pellet diameter ratio,

even for similar bumper and pellet materials.
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A crude first approximation for the long
term expansion of the gas cloud was set up, considering
the gas cloud to be formed by the expanslion of a sphere
of compressed gas into a vacuum. This approximation was
used to predlct the stagnation pressure the vehicle skin
would receive at various spacings from the bumper plate
(figures 7.3.9 and 7.3.10).

In order to match as closely as possible
the short time expansion characteristics it was necessary
to translate the sphere as it expanded. The translational
veloclty was taken as that of the shocked material which
will only be true for the centre of mass of the sphere if
the bumper material punched out has the same mass as the
pellet. However, the initial expansion was carried out
as though this were the case. The effect of a thin bumper
would require a small modifiication of the subsequent
expansion as a result of pellet shock decay.

The radial expansion velocity was taken as
the radial escape velocity associated with the cylindrical
release wave acting on the gas jet described in section 4.1.
This value is (g%T) times the axial escape velocity and
thus the gas cloud expands as an ellipsoild rather than
a sphere, Although this disteortion is now being handled

analytically, it was decided to interpolate between the



results of spherical expansion at axial escape velocity
and spherical expansion at radial escape velocity as a

first approximation.
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5.0 FURTHER THEORETICAL CONSIDERATIONS

Shock Decay

The shock wave decay due to an edge rarefaction
is now being analysed by a step by step graphlical method
as no standard analytical approach to such an interaction
could be found. The combination of the axlal and radial
rarefaction interactions and their result on the decay
of the shock strength should be combined to give the total
shock decay. No reasonable simple solution to this
problem has been found so far.

Gas Cloud Expansion

The one-dimensional region of the 1nitial
expansion system both analytical and numerical could be
expanded to allow for the shock strength decay. In the
two-dimensional region the numerical computer solution is
now giving reasonably accurate results for the short time
velocity and density distribution. This program also
could be expanded to allow for the shock strength decay.

The solution of the long term expansion
process which was handled analytically by approximate
methods based on the expanding sphere, could be programmed
using the basic flow equation as it would be a self similar
solution of an ellipsoid. Such a solution, although subject

to errors due to the finite difference approximation, would



satisfy all three conservation laws and thus be an
improvement over the simple analytical solution. In
addition, by substituting the conditions calculated by

the two dimensional method at the time the end of the
pellet reaches the shock for the uniform sphere as

initial conditions, a better approximation to the physical
case could be obtained. Finally, the effeet of radiation,
assuming transparent material, could be introduced into

the energy equation.

Jonization

The use of the perfect gas equation of state to
evaluate the temperature of the compressed material 1is
probably the most significant approximation thermodynamically.
The shock process will transmit energy by molecular
collision and in the process wlll rupture the inter-
crystalline bonds; after a few collisions the molecular
motion will be random. Dissociation of polyatomic
molecules will occur next, followed by i1lonization, both
processes reducing the temperature of the shocked staﬁe
and altering the value of the gas constant. Not only
does ionization alter the temperature behind the shock,
but the strong-shock density relation used in the analysis
is in serious error as shown 1in reference 8, for strong

shock in argon.



Effect of Finite Bumper Thickness

The reduction in pellet shock strength
and the effect on the subsequent flow of a two dimensional
bumper shock should be analysed.

The effect of shapes other than cylinders
needs to be considered. A cone would appear to be the
next shape in order of complexity, since it is still
axi-symmetrical. It is, in addition, one of the most
effective penetrators, so that it's study could well be
rewarding. Qualitatively extrapolating the effects which
appear from the analysis of the cylinder, the core would
seem to tend to retain a point as a result of decay of
the shock system, particularly for ¥ << 3, as outlined
schematically in figure 5.1. The centre of the pellet
shock would decay more rapidly than the edges and a pointed

pellet would be the end product of the shock system,
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6.0 EXPERIMENTAL PROGRAM

The experimental program can be directed
in a number of ways, as follows:

1) Physical studies of shocked media to determine equations
of state and flow characteristics of such media.

2) Verification of fluid dynamic analysis with shock tubes
simulating the models.

3) Impact tests to determine similarity between model and
actual impact, to establish suitable values for ¥ , and

to determine the effects of radiation, ionization, etec.

Any one of these programs will require
considerable time, staff, and equipment, it will therefore
be necessary to study those most likely to provide
corroboration of the theory and fruiltful results as a
basis for further analysis.

Impact tests are already underway, and by
suitable choice of materials reasonable simulation of
meteoroid impact states should be achievable. It would
appear that arsenic, cesium, chromium, iodine, potassium
and sulphur would be suitable materials, all having
low total heats of vapourization.

Using such materials, tests will be carried
out at velocities of 8 km/sec and higher. Flash x-ray,

ion detectors and splash examination will be used to
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measure spray angle and distribution, which in turn will
help evaluate ¥ . Quartz crystal pressure gauges,

thin film thermocouples and ballistic pendulum techniques
on the witness plate will be used to measure momentum and
energy distribution and pressure in the gas cloud as a
function of spacing.

Shock tube studies which in effect duplicate
the models analysed could be carried out within the state
of the art. Such studies could investigate the expansion
characteristics of a variety of substance, including water,
which would be expected to undergo a rapid change in ¥
as it flashes into vapour. It could also be used to study
the edge decay of a shock by a cylindrical rarefaction,
and the spray angle resulting from the release behind a

travelling strong shock.



7.0 DETAILED ANALYSIS

7.1 Initial Expansion

The analysis of the initial expansion flow
assumes the shocked states as defined by equations 14
through 22 of reference 1. The decay of the pellet
shock strength 1s neglected and the time of the initial
expansion analyses 1is limited to the time before the pellet
shock reaches the end of the pellet. With these assumptions
and limitations the initial expansion analysis can be
carried out assuming a constant shocked state of bumper
and pellet (¢ assumed equal to 1) material is being fed
into the expansion of the gas into a vacuum. The head
of the radial rarefaction wave was assumed to move radially
into the one-dimensional axial flow at the local acoustic
velocity, and swept downstream in an axial direction at
the local particle kinetic velocity. However, the
head of the radial rarefaction wave will in fact always
move normal to its own boundary. The assumption that its
movement 1is purely radial simplifies the analysls for this
first approximation.

Figures 7.1.1 and 7.1.2 show in the (xy)
and (xt) planes respectively, the assumed conditions
existing in the shocked states prior to the.initiation

of the expansion process.
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The conditions after the formation of RA

are illustrated in Figures 7.1.3 and 7.1.4

Within the one-dimensional region of the

expansion process, the following relations govern the

flow.
1) The slope of any C characteristic 1s given by

X=u- a,
t

and 2) for any particular particle, u + _2_4a must

always remain constant, thus
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Combining and rearranging these equations in a manner

similar to that of Ref. § yields

Since u = 22

The standard

Equation 7.1.
displacement

rear face of

u =:§¥;% +—§fﬁ% Ug +—g%%f-% ’ 7.1.3
az%*%‘*@"%ﬁ% 7.1.4
= local particle velocity

Gx _ 2 x 2%  ¥-1 7.1.5

solution for equations of this type yields

2
X = (uo gfg) t + Kt8+1 . 7.1.6

6 gives the general solution for the axial
of the bumper particles downstream of the

the bumper; for the particular solution

for the particle distribution at a specific time after

impact, the arbitrary constant K 1s evaluated with

reference to

Figure 7.1.5.

The head of the rarefaction RA sSweeps

into the shocked bumper material with velocity (aj - ug),

where aq is the local sound speed, and U, is the

translational velocity of the shocked bumper state.
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Since all of the shocked bumper material is travelling
at the velocity u, at time t=o0 (note that here t=o 1is
taken as the time at which ‘ﬁg is formed), an initial
position within the shocked state may be defined by

X = uoto, where to varies from 0O at the rear face of
the bumper to (- 5%) at the contact region separating
the pellet and bumper particles. The constant in
equation 7.1.6 is evaluated for the general particle
initially at x = —Xqs where - § < -X5 << 0, by computing

its value at the position x = (ug-ag)t, t =t

O O



g -1
Thus 8 +1
¥+1
K = - (8—‘_—1') aoto T.1.7
2
T¥+1
and X = (u + ?_a_o_) Tt - (_x_t];)a t (3‘_)
@] 8_1 -1 o0 t
7.1.8
Combining 7.1.8 with 7.1.2 and 7.1.3 yiel%f
-1
to 8F
_ 2 2 hed®)
u = u, + ) ag - gtz-ao (t ) 7.1.9
$-1
t. B+
a = ag (—tﬂ) 7.1.10

The centred cylindrical rarefaction JRC accelerates
peripheral shocked particles from the bumper to the

radial escape velocity as soon as they emerge from the
exit plane, excepting those particles accelerated to

the axial escape velocity by 'ﬁ;ﬂ The head of /RC

sweeps radially into the one dimensional flow regime of
75; at the local sound speed and is itself swept

axially at the local particle velocity. (The cylindrical
rarefaction does not in fact sweep into the one dimensional
axial expansion purely radially, but in a direction

normal to its head. The assumption of radial motion
greatly simplifies the analysis although it introduces
some error in the wave shape, particularly near the

escape boundary and the bumper orifice). The inward
progression of JRC is given by

vy =735 - \gadt + K 7.1.11
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which on substltution from equation 7.1.10 and integration
yields ¥-1
3

t
v =¥, —"%-1— aot (-tﬂ) + K . 7.1.12

/RC orlginates the instant any particles
emerge from the exit plane; its influence 1s therefore
felt by the plane of particles originally at a position
defined by x = -Xq at t = - 5; (see figure 7.1.5), when

sufficient time has elapsed for this plane of particles

to reach the exit plane. This time,

_8+1
u ¥-1
-1 0 2
t=t"'=+¢t _— = —— 1.1
© (8+1 a +g+1) 1 3
is found by setting x=0 in equation 7.1.8. The constant K

in 7.1.12 is then evaluated by using the condition that

at this value of t, y = Yo» with the result

2
K = 841 5 (8-1 Yo 2-)8_
> obo 1 3, 7 7.1.14
Thus _ 2 ¥ -1
¥-1 B+
- ¥+l k-1 Uo 2 % +1 Lo
= + t (2= 22 e _efl 20
Y = Vot a00<8+1ao+x+1> > 2ot ()
7.1.15

This expression used in conjunction with 7.1.8 defines,
for any value of t (i.e. elapsed time), and a range of
applicable values of ty, the boundary separating the

axial and radial flow regimes.
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End of Bumper Flow

The pure bumper flow ceases when the contact
surface -6- reaches the exit plane x=o0. The time
required for this to occur is obtained by setting x=o0
in equation 7.1.8 and inserting the appropriate value
of to.

The position of the plane of particles in the

front face of the bumper at time of impact (t=t;) is

x = -6 . The position at t=o 1is (-§ + uB.éL)
WB

u

i.e. X = 5 (X2 ) 7.1.16
t-o Wg
From equation 16, reference 1, —-B - 2 , thus
W ¥ +1
B B
¥n -1
X o _ B .

The point of intersection of 7; and the

-t
head of RA i1s, from figure 7.1.5

or, using equation 15 and 20 from reference 1 and the

definition of ¢

2 -1 2 5

4

A
[
[

O
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Equation 7.1.8 becomes

-2
P 22, A+l to, *1
x =0 = (u, + g:ij t (—jEJ aty (7;9
7.1.20
where t = é:l.éL
© 8+1 ap
g-1
¥+1
th t = (821 Y% , 2 g-16
us ( T +8+1) . i ao) 7.1.21
3d-1
d+1
or ¢ =% (Qil) 2(8-1) | 2 8-1 , 1
v g-1 B g+1 2%
7.1.22

Equation 7.1.22 is plotted in figure 7.1.6.

Momentum and Energy Densgity and Flux

The momentum density per unit volume of the

gas cloud downstream of the bumper plate is given by:

M= eu 7.1.23

where @ and u refer to local conditions.

The distribution of particle velocity u
throughout the one dimensional axial flow 1s given by
equation 7.1.9,

The density distribution is calculated
assuming i1sentropic expansion in the one dimensional
axial rarefaction wave, viz. from

p=A€K
e (iijggT
a

7.1.24

e, o 7.1.25
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¥ Yo
Also = 7.1.26
€ 22
_9+1 ey2
Py =5 eBO E{_X;E (equation 17, ref. 1)
(1+c)
7.1.27
B g+1 oV 2
i.e % ao2 - =5 (1+OJ) GBO 7.1.28
2
> YeB 8-1
and G;:&iﬂ. oV © . EL) 1.2

Thus M is computed by combining 7.1.9 and 7.1.29. The

momentum flux Mf is defined by

Mo = Mu = @ u? 7.1.30
and 1s obtained by combining (7.1.9)2 and 7.1.29., The
significance of the momentum flux 1s seen on noting that
the pressure force exerted by the gas cloud on the
witness plate, or vehicle hull, 1is the result of the
reaction of the hull in producing a change in the
momentum of the gas cloud particles.

The energy density per unit volume is given

by the sum of the local particle kinetic energy and

the local residual thermodynamic energy, viz.
_ 1.2
B =€ (5u"+CT) 7.1.31

The kinetic energy term is similar to (7.1.30); the

thermodynamic energy 1s found by noting that



PCVT:———————— . 7.1.32
2
Thus B -1 ‘ng TR Ao 7.1.33

where the latter term is evaluation by substitution of
equations 7.1.10 and 7.1.29 in 7.1.33.
The energy flux Ep 1s defined by

2
E. = E.u = L pud + pac u I
‘ S fr3

where equatlons 7.1.9, 7.1.10 and 7.1.29 are used in
evaluating 7.1.34.

Equations 7.1.23, 30, 21 and 34 are plotted
in figure 7.1.8 as a function of displacement with the
gas cloud. In figures 7.1.9, 10, 11 and 12 an attempt
has been made to show the approximate relative distri-
butions of M, Mf, E and Ef through theone dimensional
axial flow, and also in the mixed radial and axial flow
regime. The distributions of M, My, E and Ef in the
two dimensional region cutside the central one
dimensional core were approximated assuming the total
density increase outside the original cylindrical
boundary was equal to the decrease inside the original

cylindrical boundary.
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The momentum density represents the impulse
acting on a surface when struck by unit volume of the
gas, and the momentum flux gives the dynamic pressure
at any instant. The pressure, though very large, acts
for a very short time, and the dynamic resistance of
a material to such brief pressures 1s not known. The
impulse integrated over the duration of the flow,.gives
the total momentum transferred on to the area of the
surface affected.

An interesting modification to the above
theory would be to let the shocked state velocity u, be
zero and thus simulate the expansion that would result
if a highly energized gas were to suddenly be released
from a cavity into a vacuum. The analysis was carried
out for this bumper cavity model but not included here
because of its similarity to the general theory. It
is interesting to note that the free space expansion
was found to be bounded by a cone whose semi vertex
angle is given by © = tanfl'gé%j, Since this angle
depends only on the value of ¥\, a study of the spray
angle should give an indication of the effective
polytropic exponent o\l

It is significant that the spray angles
predicted by the bumper enclosed model are of the same

order as those observed in tests (Ref. 7). Once the
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short time flow is cut off by the arrival of the end of
the pellet, however, the cone flow angle will remain

the same until the flow at exit from the bumper becomes
subsonic. Since the radial expansion will take place

at the velocity '?ST?T aexits but the particle velocity will
drop below agy3i+, the spray angle will increase.

However, the density is very low at the periphery of the

10 gm/cm3) and no measurable

cloud (of the order of 10~
splash would be expected outside the angle given by
the short time flow model.

A computer analysis of the initial gas
expansion was attempted based on the conservation
equations applied to a volume of unit area and length
equal to the grid spacing along the axis. The velocity
and state of the gas was given at the origin and the
wave front by the analytical solution previously
described in this section.

The rate of inflow of mass, momentum and
enthalpy to the control volume was taken as the arithmetic
average of the inflow at the beginning and end of the
time interval of calculations the properties at the end
of the time interval were calculated iteratively until

successive values differed by less than 1% throughout

the field.
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The computer results agreed closely with
the analytical results in the one-dimensional region,
however,difficulty was found in the two dimensional
region outside the central core (i.e. insufficient
storage space on the 1410 computer).

It should be remembered that the initial
expansions analysis will only apply to distances downstream
of about 2 pellet diameters (1.e. before the pellet
shock reaches the end of the pellet). It 1s not 1likely
that this small spacing would be practical for meteor
protection, however, this initial expansion analysis could
be used to form the initial conditions for a long term

expansion analysis.

7.2 Rarefaction,Interactions and Shock Decay

At a time dependent on the bumper thickness,
the rarefaction wave reflected at the rear face of the
bumper will overtake the pellet shock. Once overtaken,
the pellet shock is weakened by the interaction of the
rarefaction wave and will slow down so that it is
eventually swept downstream through the bumper. Depending
on the values of @zﬂuiq'the pellet shock may initilally
progress upstream of the bumper until the axial rarefaction

slows 1t down so that it will re-enter the bumper and



pass out downstream. Whenever the pellet shock is
outside the assumed one-dimensional bumper radial rare-
faction waves will be initiated as the shocked material
expands radially outwards. These radial rarefaction
waves will also tend to decay the pellet shock.

In the case of the meteoric impact it has
been demonstrated (Ref. 1) that the pellet shock extracts
from the meteor kinetic energy considerably more energy
than that required to vapourize probable meteoric materials.
Eventually the pellet shock will be reduced to an elastic
wave due to the interaction with the rarefaction waves.
During this interaction the shocked state will gradually
be reduced from that of a highly ilonized, near Fermi
gas state, through lower degrees of Ionization,
dissociation (where applicable), pulverization (when
the energy extracted is less than that required to
vapourize, but greater than that required to destroy
crystal bonds), "chunking", and finally to that of a
shocked but intact solid. Complete breakdown of the
usefulness of the Whipple bumper shield occurs if the
final two states are reached by a decay prccess within
an impacting meteor.

Decay to the final state in an impacting
meteor by the radial rarefaction wave may be particularly

serious since the shock decays faster near the periphery



forming, in the limit, when the pellet shock 1s reduced
to an elastic wave, a cup shaped crater in the meteor
which, on impacting against a solid wall, (i.e. the
vehicle hull) will form a crater similar to that formed
by a shaped charge.

The decay of the pellet shock is important
as it will fix the thickness and density of the bumper
material necessary to vapourize a given pellet impacting
at a given velocity. The decay of the pellet shock
due to a combination of the axial and radial rarefaction
waves 1s extremely complex mainly due to the interaction
of the rarefaction waves with each other in the shocked
material. In order to obtain a workable analysis the
radial and axial rarefaction waves were considered

separately.

7.2.1 Axial Rarefaction Wave

Figure 7.2.1 shows a schematic distance-
time diagram of the interaction between the pellet shock
and the overtaking centred rarefaction wave. The
axis was fixed in the unshocked pellet which was assumed
to be to the right of the bumper. This model made
the analysis of the interaction simpler by having the

waves moving in the positive x direction.
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It is assumed in the analysis that the
entropy was constant over the fleld considered and
therefore the reflected contact surfaces could be
neglected and a simple relation between the pressure
and the sound velocity obtained. The sound velocity
in the unshocked pellet was assumed to be zero and
the simple relations across a strong shock with limiting
density ratios were used (Ref. 1). The first analysis
was done assuming the pellet and bumper had the same
density and ratio of specific heats.

The governing equations for the rarefaction
waves are:

Across a wave U + 2 a: = u, 1 2 4
Phyr 7t 2ty e

Along a wave

|

The top sign indicates a right-running wave

and the bottom sign a left-running wave.

o
For any regions Po ( PE_ - /82 1 7.2.3
o " Tp—) (—=)
Across a shock W = Q%l Ug 7.2.4

>
we @) 7.2.5
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For the contact surface between bumper and pellet to

maintain separation of the two media,

-
o= 5 7.2.6
and from 7.2.4 and 7.2.5
(.
a; 1 = (?ﬁ—) \ 7.2.7
where /3: %

The positions (Og) and (1.1) were then obtained from

7.2.2, 6, 7
3
X(0g) = (X‘Tl)z 7.2.8
t<OB) (OB)/V 7.2.9
X(1,1) = (672_%)8 7.2.10
t(1,1) * (S‘i—l)(%ﬂ\%} 7.2.11

At the head of the Rarefaction Wave:

uz =V - Uggeape = (l:@) v 7.2.12

ag = 0 7.2.13

Let 2 = size of the grid, - by trial and error a reasonable
pressure drop was obtained by calculating over half the

interaction region. The computer was limited to a
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grid of 15 by 15 so Z was set at 30 and 1 and J indexed
from 1 to 15.

From 7.2.6, 7, 12, 13

-i(w)

U(1+1,1) T Y%(1, 1) Z
7.2.14

a(1+1,1) = 2(1,1) (Z%l) 7.2.15

Now to obtain u .y and a .y 1in remaining regions if
(1,4) (1,3)

i =J from 7.2.1, 4, 5, knowing 7.2.14 and 7.2.15

3

u . = ( 1 ) u + (_i_) a
(1+1,3+1) ~ "T+F [M(a+1,3) T OWET (a4, )
7.2.16
a = (ﬁL
(1+1, j+1) = B ) V(141) (541) 7.2.17

if j.&;j from 7.2.1 and fnowing 7.2.14, 15, 16 and 17

_ 1 2
Y142, 341) ‘5[(_“(1+1,J+1) T W2, )T g1

{}a(i+2,J)-a(i+1,j+li£]

7.2.18

1

(142, j+1)7 %‘[}(i+l,j+l)+ R (U(i+2,j) - u(i+1)(j+1))

+a(i+2,j{] 7.2.19



The pressures in the regions of interest

(1.e. for 1 + J) from 7.2.3 and knowing 7.2.7 and 19
2

L1
a, )
P(1+1,+1) 7 P(1,1) [ “ﬁiﬁﬂ

7.2.20

1

where P(1,1) = Pw ug = (—-8——) 'ﬁve 7.2.21

To locate the positions X(i j)’ t( ) knowing u<i
3

1, 5 J3)
and a(4, ) from 7.2.2, 4, 5, and knowing 7.2.8, 9, 10,

and 11
1
t(1+1,1)=2(a(i+1,1) [}X(i,l)“XOB)‘ “(i+1,1)(t(1,1)'t055]"
+%[‘COB+ t(i,l_;_‘ 7.2.22

knowing 7.2.22

X(141,1) = ¥oB T (tr141,1) " PoB) (W(341,1)* a(141,1))
7.2.23
1f 1 = j

From 7.2.2, 4 and 5 knowing 7.2.22, 23

x(141,9)7x(1, ) * BED) Baiiy ey )
[}5#1)3-2
2

t(i+1,j+1)

a‘]a(i+l,3+l) = U441, 5+1)

7.2.24
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knowing 7.2.24
1) = + +
141, 3+1) T *(1+1, ) (W41, g41) a(i+1,3+1>)

e (t(i+1’j+1) - t(i+l,j)) 7.2.25

i 1% g

From 7.2.2 and knowing 7.2.22, 23, 24 and 25

1
C(1t2, 541) = 22 (112, 111) [?(1+1,j+1)’x(1+2,j)'u(1+2,j+1)°"

1
(141, 5+1) " F(asn, 5) 43 t(i+1,J+1)+t<i+2,J{]

7.2.26
knowing 7.2.26

(142, 541) = Flito, 7 (t(i+2,j+1)_t(i+2:J)) """

e (u(i+2,j+1) + a(i+2,j+1)) 7.2.27

From the above analysis u, a, p can be obtained for the
regions of interest where i=j. The corresponding position

along the shock can be obtained from x and t.

Figure 7.2.3 shows the decay of the shock
]

pressure with pellet length traversed by the shock plotted

in the non-dimensional form of P

Vs, xﬂ&. The decay

l.P 2
of the pellet shock with 2 pellet length can be

seen to be a function of X‘ 5 P, V, and S The shock
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position relative to the bumper is also indicated. For

& > 3 the shock will initially progress upstream of the
bumper then asg the shock decays it will pass through the
bumper and progress downstream. For X\§£:2 the shock

will initially pass downstream of the bumper. It should

be noted that when the shock is outside the bumper the rate
of decay will be greater than shown due to the action of the
radial rarefaction waves.

The auxiliary curves on the right of figures 7.2.3
show the relatlionship between particle velocity and initial
pressure for various initial densities and 8 s,

It can be seen from figure 7.2.2 that a different
analytical solution must be used to determine the positions
X(i,l)’ t(i,l) and the regions U(y,1)> a(i’1>. Once these
values have been determined the same analytical solution
used previocusly for the interaction will be valid if X\p
and 630 are substituted for X and F .

The reflected rarefaction waves from the contact
surface were neglected for this analysis in order to
remain within the storage requirements of the computer.

The ratio of sound speeds across the cornitact surface

can be obtained from the shocked Mach Numbers (reference 1)

. 2
an ?S‘pQ{‘p—l) (‘X\B+1‘) FBQ Y

ap &B(K\B-l)(zﬂp‘ﬂ) Fpo




-1
and ay = .&p ,Eé. ap 7.2.28
3z -1 fr
where ﬁp = _&x_\P_
ﬁp -1
N
¥ -1
6' = X‘B 1 f@g
X\p +1 Fpo
Position Op: from 7.2.2
- 4 .2.29
XQB (m)s 7
X0B
€ = _¥P
OB v 7.2.30

In region S<1)

S P
and up =G Up (ref. 1)
a1
Us(l) = (1_+QT) 7.2.31
& -1 v
B p
2s5(1) = T3 Gl 7.2.32

Position S(l)

from 7.2.2 and knowirg 7.2.29, 20, 31 and 32

S_XO - -
*s(1) ~ as(1? ttop (us(y) * 2s(y)) 7230
Xs(l) = g + us<l) ts(l) 7.2 34



In region s(1)

63 -

Introduce grid size Z and variable i

Z-1
25 (141) = Bs(1) 7
from (1)
2
us(i+1) = Us(l) - s -1 ( s(1) - S(1+41)
Position 5(1) from 7.2.2
*s(1) T FoB  Ys(an
ts(i+1) as(i+1) : :+aS(i+i (tom Ttl) + top
Xs(141) = X0B ¥ (Ps(a4q) - OB)(us(iﬂ) S(1+41)
In region (1,1)
from 7.2.28 and malntaining contact surface.
1,1(1’1) = uS(l)
% -1 [P
Position (1,1)
from 7.2.2
. i xs(1> _8 - ts(l) (u(l,l) + a(l,l))
(1:1) X\p -1
(=5—) v(1,1) - 2(1,1)
N+l
x(1,1) = ¥(1,1) (F5—) u(,1) v
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In region (i,1)

from 7.2.28 and maintaining contact surface

u(i+1,l) =uS(i+1) 7.2.&3
Xy 1B
_ “p (P

B(141,1) ~ @8(1+1) ¥ -1(ﬁé) T.2.440

Position (i,1)
from 7.2.2

X(i,l)“xs(i+1)‘u(i+1,1)(t(i,l)"ts(i+l))

2 a(1+1,1)

t(i+1,1)

) 7.2.45

X(141,1) T Fs(g41) T (t(141,1) ‘ts(i+1))(U(1+1,1)+a(i+1,1)>
T.2.46
The equations 7.2.106 to 7.2.27 of the previous analysis will
still apply to determine the shock interaction with the
now non-centred rarefaction wave in the pellet region.
Figures 7.2.4 to 7.2.6 ghow the decay of
the pellet shock as a function of density ratios from
0.1 - 10 for three values of §' (2.0, 3.0, 4.0). As in
figure 7.2.3’the shock pressure decay is plotted iIn non-
dimensional form of —E — ys, x/& . The position of the

12
shock relative to 2 f the bumper 1s also showri. It can
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be seen from these curves that the shock pressure decay 1is

less for greater bumper densities and larger bumper thickness.
From the curves 7.2.3 - 7.2.6 the critical

length of pellet which will be vapourized by the 1mpact

shock can be determined. A very conservative critical

6

pressure of 1.5 x 10~ psi was chosen as the value below
which the:pellet material would not vapouricze, The tempe-
rature 1n the plasma was assumed to be above the critical
value even wlth shock decay. Figure 7.2.7 shows the
critical pellet length as a function of bumper thickness,
impact velocity and density ratio. The minimum weight
of bumper can be determined by taking various density
ratios and their equivalent bumper thicknesses required to
vapourize a given pellet.

It should be remembered that in figures
7.2.3 = 7.2.7 the radial rarefaction waves were not

considered and hence the shock decay estimated will be

less than would be expected 1n the actual physical case.

7.2.2 Radial Rarefaction Wave

Without analyzing the effect of the inter-
action of the radial rarefaction with the pellet shock,
the critical pellet length cannot be predicted with

confidence. As mentioned in section 7.2.1 for certain
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conditions of X‘and@"ahe shock will initially progress
upstream of the bumper for a period of time before being
swept downstream through the bumper due to the action of

rhe axilal rarefaction wave, During this period of time
radial expansion will occur and the radial rarefaction waves
will decay the shock.

The mathematical condition for the formatlon
P

of JR upstream of the bumper is (v-wp)<io, where the
=
direction of V is considered positive. The conditions

AN
specifying the magnitude and direction of (vn-wp) are found

by comparing equations 14, 15 and 16 from reference 1, viz.

¥+l

R

Wp - 2 up K} 7.2.48
v 48
Up = ‘ =, 2.
B g +1 FBO !
1+
55 +1 Fpo
u 1
ard P

—_— = 7.2.49
Upg X; +1 fﬁ%

& 1 (Pr,

which when combined yield,

R

P

v
' » 7.2.50
P > \F/‘p +1 Ppo »
Y 1 (’BO

w
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For convenience, set

| +1
0_223‘9 foo 7.2.51
5 +1 (OBO ’ e

x\ +1 i Ep

Noting that if Z‘L #~1, then & © ., note also that
5 +1 ’VFB
o]

for most combinations of pellet/bumper combinations considered,

and for low density meteoric impacting on metallic bumper

plates,
! 1
OIS
d +1
Thus, Wy = 5§—$I-¥ , 7.2.52
= V¥
p _E.——’*'I 7.2.53
P (Y,-1)
a =~/—LP-—.-(X\ v_, 7.2.54
b 2 q +1
and (V-w)=(1—l§\P——E)V 7.2.55
P >t . .2.
X, +1
For wp> v, 6:1'9—+_1—> 5
or X‘p>2G" + 1 7.2.56

If the pellet and bumper have equal densities
and X\'s, then for (V—wp)( 0, X‘) 3. If the bumper
material is more dense than the pellet and (XE +1)/TX% +1) =21,
then ! <1 ana (V?wp)<\0 for 314_3. For very light meteors

impacting on, say, an alumiﬂized mylar bumper, g¢' may be
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very small so that (V—wp)<\0 for any real value of &' ; viz.
forg!' = 0.1, wp>V for X‘p>/1.2. From the point of view
of eliminating the cylindrical rarefaction decay it is
apparent that gl 2?1 1s desired, however, since the strength
of ‘gg and hence its destructive power 1is inversely pro-
portional to @', the length of pellet destroyed for any
given V 1s also inversely proportional tocr'.

Consider the following sketch, (figure 7.2.7).
The disturbance originating at position (o, yo) at time

t=0 will, after a time dt, be characterized by a circular

front of radius ay dt, centred at ((V—up)dt, yo). The

3% VAN 2 A A
\\ __,»/ // / / /
/
v \ ‘___// // /I //
3 ' S———" d /
- ~ // //
s -7 7
P_x/go‘ ~N . e —
l b, T
—1— -
TV (e o ”

Fig 7.1



circular front then 1is described by

(x - (EEIT

It
W)
n
o
o+
n

) a0)% + (y-y )2 = ag

at time dt.
b
The position of the shock Sp at time dt
is given by

x = (V - wp) dt 7.2.58

The point of interaction of the shock and the head of the
rarefaction, 1s found by combining 7.2.57 and .58 to yield

—_——
= +ala® - (w.-u)®
vy =730 D p Y’ 4t ; x = (V;wp)dt

7.2.59
The point at which the influence of JRC has been extended
to include the entire shock wave, that 1s, where the head

L
of JRC intercepts S at y=o, 1is given by

P
= - 2. - 2
v, {7ap (wy- up)®  dt 7.2.60
- (V—wp) Yo
X = 7.2.61

This reduces to

X i1 - 2(9 +1)

Yoo () (K1) o

when 7.2.61 is combined with equations 14 - 16 of reference 1

and equation no. 7.2.51.
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Figure 7.2.8 is a plot of x/y_ vs. & ana g
(s01id lines). Note that (¥*/y,) is measured from the '
bumper plate front face and thus gives the distance between

A
that face and Sp for complete influence by‘QRC.

L—

The position of the wave Sp from the rear

face of the pellet for the above situation, assuming the

pellet length 1s Q is given by

X = _ ’Siﬂ
5 QO g_—l‘yo 7263

since in the time dt taken by the wave to reach the pellet

o,

e

centre line the pellet has moved a distahce

v
Yo 2 (T +1)

WJQPQ..(wp—up)g ) j‘(&gij?gqg}.
7.2.6

vat =

L

Note that @' does not appear in this expresslon, hence
l.

the overtaking and decay of Sp by ARC is independent

of the pellet and bumper densities, and depends only
(Hl‘&r In figure 7.2.8 equation 7.2.63 is shown (dotted
1ines) along with equation 7.2.62, Note that for K\ = 3,

regardless of the density ratio, over 70% of the pellet is

Lo
consumed by S, (at the pellet axis) before feeling the

influence ofq Rc’ if‘zo = 2yo.

t
For §'= 3, 0 =1, (x/'yo)rel = 0, that is,

£

Sp remains flxed at the exit plane. For X‘: 3+E, where



, 0%t l=~¢& Y
| ~3’;=‘6+l-2(6'+l> ,
| A
b ! ¢
- /
wl X g [l /
o \jo‘lo' ‘%:T L}o =3
u - /
d / 2
9 /
s /
& / -3
g 7
- - / i z
"FoR <542 (OMPLETE OVERTAKING DDES NOT DCLUR
WTHIN THE PELLET OF LENGTH = | DIAMETER s
\ --‘5 D yﬂo

Distance to dotted line (measured from x/y, = O)

represents the absolute distance travelled by the shock

&
Sp before the rarefaction wave QRC indluences the

entire shock. Note that this distance 1s a function
of ¥ only not of & (equation 7.2.63).

Distance do so0lid line represents the distance relative

‘____—
to the front face of the bumper plate travelled by Sp
before being influenced entirely by Jij (as function

of both ?f.and.d”)(equation 7.2.62).

INTERACTION ReTWeeN “_S_p ¢ /R. UPSTREAM o0F BUMPER
Flg 7.2.8
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L—
£<<1 Sy also remains essentially fixed at the impact

plane x = —é), however, an JRC wave 1is generated since,
L.
in fact, the position of Sp is x = —(g+ £t). Some

radial pellet flow must occur on the-front face of the
bumper for & = 3 +E, thus the pellet shock must expe-
rience decay by the action of the cylindrical expansion.

The above analysis 1is valid only if the
cylindrical expansion is assumed to emanate from the
point x = —£-, y=y, on figure 7.2.1, that is, at the
geometrical junction between the front face of the bumper
and the pellet periphery. If, as is most probable in
any real interaction, the pellet i1s destroyed at the

L‘
periphery by S as well as in its interior, the origin

p
L
of'\lRC will follow some distance behind S, the lag
depending on the ratio of the rates of radial to axial
decay. The head of JRC will not be affected by the
motion of the point of origin, but its internal structure
L——

and hence the rate of radial and axial decay of Sp will
be influenced by this factor.

As the edge of the pellet shock decays,
due to radlal rarefaction wave interaction, it's speed
will fall and 1t will tend to move back into the bumper,
so cutting off the rarefaction. In fact, the pressure

behind the shock will fall until the velocity equals

that of the pellet and the shock will remain a short
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distance ahead of the bumper, leaving a narrow slot for

the high pressure gas to escape. The pressure behind

the outer edge of the shock required to maintain this

shock speed will be %?%I)§>OV2 from equation 5 of reference 1,

setting w, = V; for ¢ = 4, the initial shock pressure

¥
(—éig ,

the decayed shock to that behind the undecayed shock is

p
V2) iS‘§§>p VE, and the ratio of pressure behind

16/25 or .64, As the main part of the shock gets further

ahead of the edge and the shock surface becomes 1nclined

fo the pellet velocity, the shock can decay further,

as seen in figure 7.2.9. If the shock stabilized at

some angle ©, S0 then w = Vcose. P = _2_ V2 cos” G.
p +1 Po

and if @ = 450, the shock pressure will have dropped by

a further factor of two.

Fig. 7.2.9

From the analysis of the interaction of the
reflected rarefaction wit% the shock, the shock travels
a distance of about 1.5 bumper thicknesses before

reversing direction, so that for thin bumpers, the
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angle 6 is likely to be less than 45°. Consequently the
shock decay by a cylindrical rarefaction ahead of the
bumper 1s not 1likely to be the limiting factor in pellet
destruction.

The shock will eventually pass downstream
of the bumper in all cases due to the interaction with the
axial rarefaction wave. The length of pellet that will be
shocked before the radial rarefaction wave downstream of
the bumper reaches the centre of the pellet can be
determined from the previous axlial and radial rarefaction
wave analysis. The time for the pellet shock to move
Just downstream of the bumper and the shocked state at
this moment can be obtained from figures 7.1.3 - 7.1.7 for
the axial rarefaction interaction with the shock. Then
using the analysis for the radial rarefaction interaction
equations 7.2.13 - 7.2.17 the length of pellet fed
into the pellet shock before the radial rarefaction reaches
the centre of the pellet can be calculated. Figure 7.2.10
shows the length of pellet that is shocked as a function
of the radius of the pellet and ¥' for & = 1.

It can be seen from figure 7.2.10 that the
radial rarefaction wave downstream of the bumper will not
reach the centre of the pellet before 1t is consumed if
it has an L/D ratio less than 2. (taking q= 1 and & 2 2).

It 1s certain that, as long as the prcssure in the core
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of the shocked pellet and inside the radial rarefaction
wave 1is of the order of a million pounds per square inch
any unvapourized skin which might result from edge decay
of the shock will be fragmented as a result of this

internal pressure. Therefore it has been assumed for

the present that the decay of the pellet shock due to

the radial rarefaction waves will not 1limit the critical
length of pellet providing the L/D ratio of the pellet
is< 2. A computer program is now being written for

the decay of the pellet shock due to the radial rarefaction
wave Interaction based on a stepwlse analysis in the

radial and axial directions.

7.3 Long Term Expansion

The analytical and numerical analyses for
the expansion of the gas flow in the one and two dimensional
regions behind the bumper are limited by the assumption
that pellet material is continually feeding into the pellet
shock and thereby supplying compressed material to the
expansion wave. For short pellets (L/D = 1-2) the gas
cloud 1s still less than two diameters behind the bumper
when the last of the pellet is vapourized by the shock;
after this the gas cloud expands without a continuous

supply of shock material.
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The gas flow expansion for large distances

downstream of the bumper was analysed approximately

using the method of Stanyukovich (Ref. 5) for the expansion
of a sphere of compressed gas into a vacuum. This
approximation may be seriously in error 1if the plasma
produced by the impact exhibits considerable cohesion

and acts more 1like a fluid metal being bound together by
the free electrons in the lattice of positive i1lons, than

a gas (ref. 7). However BRauer, Cook and Keyes (Ref. 8)
show that if a detonation generated plasma 1s compressed,
on subsequent expansion it overexpands past 1ts equilibrium
size, becomes unstable as recombination occurs, and
explodes, If this explosion occurs in all directions,
then the expanding sphere analysis would seem to be

a useful one,.

The instant the spherical boundary of a

compressed gas 1s released into a vacuum a rarefaction wave
is initiated at the original boundary. The particles
originally forming the boundary travel outwards at escape
velocity while the head of the wave will move iInto the
compressed gas at the local speed of sound,until it
reaches the centre. Up to this time the material
enclosed by the wave head is unchanged. Once the

wave reaches the centre it will be reflected as a
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spherically expanding rarefaction (without such a reflected
wave an expanding vold would be produced at the centre),
and the density inside the wave then decreases with time,
Stanyukovich discusses the distribution of
density and velocity in the gas cloud both for short
times before the head of the rarefaction wave reaches the
centre, and for long times when general decay has taken
place. An analytical solution is apparently impossible
(p. 498, Ref. 5) but several approximations are suggested,
appropriate to various times. Since a long time solution
was required for this analysis equations 63.22 and 63.23

were used, taking N=2 for spherical symmetry.

u, = r/t forr&ajt 1i.e. T 7.3.1
U, = O for r'> aot
and F _ A %9_.{— - (é&l.ip )%}
(at)3 2 &t r.3.2

where A and Y were evaluated by Stanyukovich using the

conservation of mass and energy.

¥ 3+ 2z 7.3.3

i

A = (2 Y+3)! (Z(\—_—l_)3 1
vr (v+1)12(2¥+1) 72

Mo’ the total mass remains constant.
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Momentum is not conserved in the above
equation for density but Stanyukovich estimates a maximum
error of only +10%. The accuracy of his equatlons could

be checked by programming an expanding sphere based on the

conservation of mass, momentum and energy.

TARGET

UNi FORM

TRANSLATION
_4/

ne

MINIMUM
Ex PANDING

APPROY\MATE. GAS CLOUDJ

TNASTAN TR T RIS AAMAMANNTNNYNANNNRNNNNTINNNNANN

AFTeR LonG TiME FeoM /. MaviMoM
| MPACT Ex PANDING
CpPugeE
BROMPER s
SPACING

ExPANDING SPHERE SIMULATION OF (AS CLonD Fe ]
2 L ] v
It is not possible to use a single expanding
sphere approximation, because 1t does not match the short-

time flow given by the cavity-flow model. This model

showed that the axial escape velocity to the right was

2
(YET) ap p (which will also be that to the ieft), whereas



2 2
the radlal escape velocity 1is _——-(E:I aP,B)' The gas

X-1
cloud will therefore have the approximate shape of an
ellipsoid with an eccentricity of 2, if ¥ = 3. To estimate
the momentum distribution with time and radius at various
large distances behind the bumper, the flow in two spheres

/
was calculated, one expanding Tg_'times as fast as the

o\+1
other, as shown in figure 7.3.1. Along the axis, the
initial rise in momentum density and flux 1is given by the
larger sphere. However, this model underestimates the
density for later times, since 1t assumes a much greater
expansion of the cloud, and the momentum flux and density
are obtained from that of the "inscribed" sphere
distribution, allowing for the fact that this model
overestimates the density.

Only the axial component of momentum was
calculated, the radial component may give rise to some
scouring but the pressure generated on the witness plate
will be the result of the axial component only.

Referring to figure 7.3.2 the centre of the
sphere was assumed to be moving to the right with a
velocity of u; the velocity of the shocked material.
This assumption is valid only if the shock strength decay
is neglected. A coméuter program was set up to determine
the stagnation pressures a witness plate would experience

from the following numerical analysis.
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Values of Y, PB , V, D, and S were chosen
o}
for typical ranges that would be expected in meteor
impact, i.e. ! = 2 —»3.33, PB = 3 gm/cm3, V = 20- 80 km/sec,
o
D=1ocm, S =10 300 cm. From these given values the
constants, Uy 84 PO’ Y, A, ts, At, and M, can be

calculated as follows.

_V .
u, = 5>  assuming F P, = Gﬁ% 7.3.5
- $(¥1)
%o = Yo X\g 7.3.6
: A+
(<)) = PBO (X\—‘_l) assuming limiting density

ratios T.3.7

Y =38+ 2 Stanyukovich 7.3.8



A =

ty

At

(2Y + 3)! 1
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>3

v (v+1)12(28+1) 2

)T
Stanyukovich 7.3.9

5 7.3.10

(—=) ty (XCT) for centre of sphere

© to reach plate in
10 At 7.3.11
D3
TT.?;) fg assuming shocked

plasma originally
occupies a spherical
volume with a radius

D/2 7.3.12

Now, knowing the above constants, the cu.

stagnation pressure for a sphere on the witness plate

can be determine@ as a function of time and radlus from

the centre axis of the sphere travelling in the directions

of impact.

at any time

t = ti + n At

where m, varies from 1 - 20

X = 8 - uot

annm "
1 — 2 2
T max —,\}r max >

Ar' = T'hax /10

where r'max is divided into 10

increments



and at any r'

(figures 7.3.3 - 7.3.8).
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=m Axr'

where m varies from 1 - 10

o- M, A (1. )Y 2 )3
- 3 T2 1
for r . = 2 a t
-1 ©
= K
u = —’1-1 + U.O
axial momentum density 7Du
axlal momentum flux ﬁOue
and stagnation pressure p. = L pu2 +
g 0 eﬁu P
where p = £ 32
b
g -1
and a =

a | 2
o‘(é%J

A new value for ag, =

computations repeated.

2
a ——pe
O(&+l) is then

7.3,

7.3.

7.3.

T.3.

7.3

calculated for the expansion of the small sphere and the

The peak stagnation pressure for the small

(radial expansion) sphere and the large (longitudinal

time after impact for 6 values of ¥ (1.67 - 3.33),

the large sphere expansion dominating at the

expansion) sphere were then plotted as a functlon of the

The stagnation pressure for

the elliptical expansion was then sketched in by hand

13

17

.18
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extreme ends of the expansion and the small sphere
dominating at the centre. It can be seen from figures
7.3.3 - 7.3.8 that the smaller the value of & the more
accurate will be the approximation to the elliptical
expansion.
Figure 7.3.9 shows the non-dimensional peak
Po (§)3 variation

%.PBO v D t
with the non-dimensional time coefficlent /(s/D)

centreline pressure coefficient

for various values of X\. The maximum pressure and the
maximum rate of application of pressure on the witness
plate can be determined from this figure for known values
oflgBo, S, D, and V. It can be seen that the peak
pressure and rate of application will increase as @, f%
V, D increase and s decreases.

Figure T7.3.10 shows the radial distribution
of the peak pressure of the expanding ellipse for a
particular case with different values of &. The
radial distribution indicates a general Gaussian error
curve which varies approximately as the cube of the
radius. The integration of the area under the curve
would give the maximum total force acting on the witness
plate.

Figure 7.3.11 shows the variation in peak

pressure vs. spacing for two impact velocities. The
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